Archive

Posts Tagged ‘small modular reactors’

Nuclear energy – it isn’t dead yet

March 15, 2012 Leave a comment

The Fukuskima nuclear accident took place exactly a year ago with a death toll of 19,000. After the accident, Governments around the world shelved new nuclear generation plans, and inspected safety regulations of existing plants.

This proved however only to be a temporary blip in the nuclear industry. Only Japan and Germany have enacted legislation to dismantle existing power plants. In most developed countries, existing nuclear plants are allowed to run till the end of their life spans. A number of developing countries in the Arab gulf, Africa and Asia have also indicated interest in nuclear power generation. Notably, in the USA, the Nuclear Regulatory Commission (NRC) just approved the first nuclear plant since 1978 in Georgia. For an excellent note on nuclear energy post Fukushima, see the IAEE article for a summary.

In this article, the author writes that nuclear energy will still remain an integrated part of the energy portfolio of the future. In fact un-tellingly, it is still important in projected energy scenarios of the future.

Nuclear remains part of the energy portfolio

In the BP energy outlook to 2030 (this was done post Fukushima), nuclear energy share of world primary energy is expected to remain constant at ~7%, even though power consumption is expected to increase 50% from 22,000TWh now. A public website of the IAEA indicates 63 nuclear power plants presently under construction after 13 plants were shut-down during the 2011 accident.

 Growth of world power generation

Growth of world power generation

Key reasons underpin the continued importance of the nuclear energy. Firstly, as a baseload generator of electricity, it complements renewable generation intermittent nature. Advances in technology are also reducing the size and costs of nuclear plants set-up. Notwithstanding that it doesn’t have carbon emissions is also an advantage although the concerns over environmental waste far outweigh this.

Electricity demand during the night and winter is generally higher than during the day and summer in the temperate regions. The former peak load generation accounts for much of the capacity generation which are not well utilised during base load generation. This leads generally to power plants being used at generally low capacity factors of 30-50%, and with consequential higher construction and efficiency costs. The intermittent nature of solar and wind energies do not fit into these electricity usage patterns generally, and need to be supplemented by base load nuclear generation, which operates continuously.

In fact, it is this mismatch in generation and consumption that necessitate energy storage. The latter is presently under much research, with promising advance in hi-tech batteries and hydro-electric storage. Energy storage together with distributed electricity resource systems (DER) are instrumental to the much hyped smart grid technology being employed in future. DERs are small modular energy generation and storage facilities that adjust to the electricity consumption patterns.

Small modular reactors (SMR) may hold the promise of nuclear energy being used in DERs. SMRs are typically 1/10th to 1/3rd of a typical nuclear power plant with ~1 GW. These SMRs have the advantages of lower turn-around time and costs, and being custom built for specific industrial / municipal uses. These come in useful in the uncertain regulatory climate for nuclear energy with approvals often spanning years and costing billions of dollars. A 1GWe of nuclear plant for example costs an estimated $2b. SMRs embed best safety practices used in conventional nuclear plants but has smaller potential hazards with its ‘smaller size’.

Nuclear energy has its past setbacks with the Cherboyl and the Three Mile Island accidents. Lessons were learnt but nuclear energy will stay on in spite of the recent Fukushima accident. The author ends the note with a youtube video on the Fukushima nuclear accident as a testament to its devastation and the loss of lives.